Digital Enterprise

Daniel Hao Tien Lee

http://danieleewww.yolasite.com/2018-mgb070.php danieleewww@gmail.com

ref. https://www.youtube.com/nvidia http://www.uilabs.org/innovation-platforms/manufacturing/

The Fourth Industrial Revolution

The Start of the Fourth Industrial Revolution

End of 18th century

Late 20th century

Digital Organization

 Digital Leadership (Digital Transformation Change Mgmt.) Digital ROI/Business Cases/Deployable Funding, Digital Pace) Digital Enterprise Content Management Digital Community (Collaboration, Shared Ownership) Digital Ethics

Data Utilization (Enterprise Level)

Enterprise Management: ERP

Product Lifecycle Management Design: PDM Manufacturing: MOM, MPM, MES Product Usage and Feedback Supply Chain: MRP

Enterprise Risk Management

 Business Continuity & Resiliency Disaster Recovery Data Continuity Data Recovery Risk Registry / Impact Analysis

Research Materials

 Processes Technologies Partnerships Innovation Labs

Digital Product Definition (Thread Plan/Curation)

 Data Sources
 Data Definitions
 Authors & Consumers System & Feedback Models
 Legacy Data Management Communities of Practice and Data Grouping

Digital Enterprise **Digital Thread**

Supply Network

Digital Design MBSE: Part/Assembly/System Product Design & Simulation (Behavior) **Product Design Segments** Mechanical •Part & Assembly Design & Simulation

 Electrical System Design & Simulation Electrical

Software & Embedded Systems

 Product Software Systems (High Level) Product Embedded Systems (Low Level)

Product Design & Simulation Tools

 VR/AR •FEA/M •CFD/E •Multiphysics Simulation Rapid Prototyping •Design for Manufacture/Assembly Design for Cost •Design for Service

Product Definition (Context)

Model Based Product Definition Package (DP2 or TDP) Geometry •Material Definitions •Contextual Definitions Design Intent •Surface Finish Requirements •GD&T Part vs. Assembly Definition BOMS

Product Reliability (Improvement)

 Product Testing and Internal Feedback Systems External Product Feedback Systems

Supply Chain Risk Management

 Design: Design Alternatives (parts, materials, packaging) Manufacturing: Supplier Qualification & Capability Analysis, Supplier Visibility, Inventory Planning

 Logistics: Discrete Event Simulation (Channel or Event Impact Analysis) Legislative Impacts (Import/Export Regulations)

Data Pathways

 Communication Protocols Network Architecture User Devices •Gateways Storage Systems Transmitting Systems

Security

 Device Cybersecurity Software Cybersecurity Information Cybersecurity Data Transfer Security

Digital Manufacturing Manufacturing System Monitoring

 Sensors •Connected Equipment •Predictive Maintenance Asset Performance Monitoring and Management Digital Metrology (CMM, connected gauges) Digital Assembly Tools (driver/torque wrenches)

Manufacturing System Control

 Controllers (PAC, PLC, Drive Controls) Robotic Systems •Automated Systems

Manufacturing System Support

 Digital Work Instructions (Device, Wearable, VR/AR) Worker Support Tools (pick-to-light, smart work stations) •HMI

Manufacturing Simulation & Methods

•CAM •ICME •Process Simulation •Assembly Simulation Discrete Event Simulation (Assembly, Line, System) Motion System Simulation

Infrastructure

 Building Control Systems
 Building Security Systems SCADA, plant systems
 Shop Floor OT Systems

Automated Material Handling

- AGVs (Tape Based and Adaptive Path Planning) Mobile Robotics
- Delivery Planning and Station Response Systems

Data Management

 Business/Data Regs. & Definition •Data Mining Data Modeling •Data Architecture •Data Fusion Data Model Management
 Data Life Cycle Cloud •Data Integrity Data Cost Modeling

Cognitive Systems

Embedded Cognitive Environments

Digital Product

Product Lifecycle Data

- Usage •Environment Conditions
- Performance •Alarms •Location

Product Customer Services

 Performance Monitoring & Optimization (product) Maintenance Planning (scheduled and analytic) Asset Tracking •Community Tech Support End-of-Life Decommissioning

Product Lifecycle Feedback

 Performance Optimization (concurrent) Reliability Improvement

- Customization to Market (Sales Engineering)
- Business-side Services ("Rent/Buy" price/adjustments, etc.)

Connected Inventory (External)

 Material In-Transit Sensing Material In-Transit Tracking Fleet Management (Plan, Track, Idle Services)

(Internal)

 Inventory Tracking (RFID, GP5, Vision) Automated Storage & Retrieval Systems

Enterprise Virtualization

- Value of Pursuing Digital Excellence
- Digital Transformation
- Digital Twin

https://www.youtube.com/watch?v=RaOejcczPas https://www.youtube.com/watch?v=5pduzVtpIPI https://www.youtube.com/watch?v=RiOTD7kYsIQ

• Digital Thread

https://www.youtube.com/watch?v=rkachfbskKU https://www.youtube.com/watch?v=ULFKLHzsA4E https://www.youtube.com/watch?v=TIEkYVaijgc https://www.youtube.com/watch?v=CFo9OE-f9Ws

- Digital Workplace
- Digital Workforce

The Value of Pursuing Digital Excellence

Leading manufacturers have mastered operational and manufacturing excellence.

Now, is the time to differentiate by mastering on digital excellence as well.

An Automotive Value Network

An Industrial Equipment Value Network

Digital Factories

The Field and Engineering Service Economy

Immersive Experiences Delivering Business Value

Excellence in Digital Manufacturing, Today

Accelerate value creation and drive sustained improvement through immersive human-machine interaction and innovative partnerships, using a trusted cloud platform

Digital Excellence strategic framework

Mixed reality | Cognitive & Intelligent Equipment | Value Network Collaboration

A New Class of Digital Twin

*Dr. Michael Grieves and John Vickers - University of Michigan

Digital Twin: A virtual instance of a customer's smart connected physical product

Digital Twin Solution Architecture

Digital thread

Digital Twin System Architecture

Microsoft cloud application

Digital Twin is a Strategic Journey

The Connected Customer

- Monitor performance & maximize efficiency, reliability
- Refine or add value-added equipment features & services
- Mitigate downtime and increase availability

The Connected Enterprise

- Drive design & engineering innovation through customer & equipment insights
- Improve quality and reliability
- Differentiate with 360 degree customer service

Digital Transformation: An Imperative

Forces driving digital manufacturing

14.0 Design Principles

Vertical integration | Horizontal integration | End-to-end engineering

Digital Twin

A virtual representation of a product, process, or service

Digital Twin

- A digital twin is a dynamic digital representation of an industrial asset, that enables companies to better understand and predict the performance of their machines and find new revenue streams, and change the way their business operates.
- https://www.youtube.com/watch?v=2dCz3oL2rTw
- https://www.youtube.com/watch?v=r_2GRLxAsEs
- https://www.youtube.com/watch?v=0ccMF5G5L5w

The Fourth Industrial Revolution: Digital Manufacturing and Design (DMD)

IoT – Industrial Internet of Things Smart Factory Manufacturing 4.0 Data-driven factory of the future **Digital Thread** Industry 4.0 Intelligent Factory **Factory of the Future**

"Digitizing the shop floor"

The Fourth Industrial Revolution

What forces are driving the digitization of manufacturing operations?

- Separation of designers and makers has slowed innovation
- Barriers for Sharing Data and Information including: technology, skills, incentives, security, trust, IP, standards
- Increasing cost of labor globally, skills gap
- Rising costs of materials and supply constraints

Opportunities

- Digital link between designers and makers
- Digital connections to physical assets machines, factories, and supply chains
- Data aggregation and analysis to do more with existing resources

The Fourth Industrial Revolution

Traditional Product Lifecycle

DM&D Product Life Cycle

Digital Thread: Heart of Digital Manufacturing

- The digital thread is a single, seamless flow of information that connects a series of data-driven events and stretches across the 5 phases of the product life cycle (PLC) below:
 - 1) CONCEPT Requirements Development (Customer Requirements),
 - 2) DEFINITION Design and Analysis (Product Technical Data Package [TDP]),
 - 3) MATERIALS & MANUFACTURING Manufacturing and Assembly (Process/Production Planning),
 - 4) USE & SERVICE Repair/Maintenance
 - 5) END OF LIFE Recycle and Disposal

Digital Thread

- https://www.youtube.com/watch?v=iGtM8VGLn5M
- <u>https://www.youtube.com/watch?v=Mjzg5nku5Lg</u>
- <u>https://www.youtube.com/watch?v=hLJ8be4I1Bs</u>

Driving the Digital Enterprise

Smart products are transforming every industry

Unrestricted © Siemens AG 2018

Siemens PLM Software

Page 27

"Digital is the main reason just over half of the companies on the Fortune 500 have disappeared since the year 2000."

Pierre Nanterme CEO Accenture

Unrestricted © Siemens AG 2018 Page 28

Technologies enabling the digital twins

Compresses the innovation lifecycle...

Unrestricted © Siemens AG 2018

Siemens PLM Software

SIEMENS

Ingenuity for life

Page 29

Page 30

Software

Digitalization ...

Siemens PLM Software

Page 31

What problems do they solve?

Product Twin – Predict

- Physical appearance and attributes
- Performance characteristics
- Environmental Response
- Failure modes

Production System Twin – Predict

- Physical layout and attributes
- Production capacity and utilization
- Optimize throughput

Performance Twins - Insight

- Optimize in-service operation
- Predictive maintenance
- Validate "as designed"

Unrestricted © Siemens AG 2018

Siemens PLM Software

Page 32

Enable excellent performance on every program

Program Execution Excellence

Improve program cost, technical and schedule performance through a *Model Based Enterprise*, *Digital Twin – Digital Thread*

Gain competitive advantage by employing a preconfigured technology to focus on the automation of specific A&D value streams

Increase performance in production, support and future bids by *sharing product knowledge & definition within a unified system*

Unrestricted © Siemens AG 2018 Page 33

Program Execution Excellence Value Stream Solutions Generate Competitive Advantage

Program Execution Excellence Value Streams on the Digital Innovation Platform						
Systems Driven Product Development	Integrated Prog. Planning and Execution	Product Engineering & Design	Supplier Source Selection and Management	Verification Management	Product Realization	Product Support Planning and Management
OPTIMIZATION & INNOVATION	MEETING COST, SCHEDULE AND TECHNICAL REQUIREMENTS	EFFICIENT FIRST TIME RIGHT	EFFECTIVE SUPPLIER MANAGEMENT	FASTER TIME TO CERTIFICATION	MEETING COST & PRODUCTION GOALS	INTEGRATE SERVICE WITH THE FACTORY
A systems driven product development approach leveraging systems engineering and 3D models from idea thru to support.	A systems approach to project planning a fully planned, resourced ,budgeted and executed program management	Design with advanced materials, integrated CAD/CAE, maximize reuse, advanced configuration management.	Enabling traceability from OEM requirements to suppliers. Proactive supplier management.	Enabling traceability from requirements thru virtual and physical test to ensure product verification.	"Shift left" manufacturing planning to ensure cost, schedule & safety goals are achieved with fully integrated factory.	Design for support. Plan for support. Manage service planning. Closed loop support with manufacturing and design.

Unrestricted © Siemens AG 2018 Page 34

Program Execution Excellence Capabilities Matrix

Unrestricted © Siemens AG 2018

Siemens PLM Software

SIEMENS

Ingenuity for life

Page 35

Program Execution Excellence Capabilities Matrix

Siemens PLM Software

SIEMENS

Ingenuity for life

Trends

Improve Operational Availability

Model Based Definition Requirement

Aftermarket Service Revenue

Unrestricted © Siemens AG 2018

Page 37

Product Support Planning and Management 'Disconnected' BOMs

Unrestricted © Siemens AG 2018

Page 38

Product Support Planning and Management Digital-Thread for 'Closed Loop' Product Planning & Support

Unrestricted © Siemens AG 2018

Page 39

Siemens PLM Software

SIEMENS

Ingenuity for life

Product Support Planning and Management Digital-Thread for 'Closed-Loop' Traceability

Unrestricted © Siemens AG 2018

Page 40

Unrestricted © Siemens AG 2018 Page 41

Systems Driven Product Development

Page 42

Software

Systems Driven Product Development

Unrestricted © Siemens AG 2018

Page 43

What MADe does

Design in safe, quick and easy replacement of components

[2][]

Key Tasks

•Simulate human maintenance to optimize design

•Validate maintainability with virtual reality immersion

Value

Elimination of physical prototype through earlier consideration of maintainability
Maintenance costs and downtime

reduced through better designs

Unrestricted © Siemens AG 2018

Page 45

Create and Manage Service Plans tied to the Model Based Configuration

Key Tasks

•Develop service plans that support proactive service models such as preventative, condition and reliabilitybased maintenance as well as platform upgrades.

Value

•Enhance service quality by ensuring that approved service procedures are defined and followed.

Unrestricted © Siemens AG 2018

Page 46

Build the foundation for all future maintenance activities being tied to the Engineering Configuration

Key Tasks

•Leverage engineering definition to define physical structure including serialized parts and operational characteristics

Value

 Improves asset tracking and life usage by leveraging fully defined lifecycle bill- ofmaterials (BOM)

•Service quality improvements

Unrestricted © Siemens AG 2018

Page 47

Scheduling Connects Service Planning to Service Execution

Key Tasks

•Define work scope and schedule within the limitations of resources and available qualified personnel.

•Deliver assignments with all the necessary information to execute work.

Value

 Increase service operations efficiency through visibility to schedules of current and future work.

Unrestricted © Siemens AG 2018 Page 48

Unrestricted © Siemens AG 2018

Page 49

Design for Maintainability

Service Planning

Service Structure

Service Scheduling

ervice Execution

Closed Loop Deficiency Tracking

Tie deficiencies directly to Engineering and Planning

Key Tasks

•Technician captures failures and corrective actions directly in Service Work Instruction interface.

•Routed directly to responsible supervisor for action

Value

•Enables the non-stop execution of work at the point of service.

•Enhances service and asset performance by retaining and delivering service experience and knowledge at the point of task

Unrestricted © Siemens AG 2018

Page 50

What makes Product Support Planning and Management Unique?

Siemens PLM Software

Unrestricted © Siemens AG 2018 Page 51

Summary - Product Support Planning and Management

Siemens PLM Software

Unrestricted © Siemens AG 2018 Page 52

Summary Digital Thread – Digital Twin

The Digital Twin – Digital Thread delivering real value Achieving..... Program Execution Excellence

Unrestricted © Siemens AG 2018

Page 54

changes Everyth

Deloitte.

Digital Thread for Additive Manufacturing (DTAM)

Siemens Innovation Leadership Summit March, 2018

Digital Thread Connecting the Entire Product Lifecycle

The digital thread enables organizations to design anywhere and build anywhere at scale while unlocking insights into rapid product and process optimization

Deloitte.

Copyright © 2017 Deloitte Development LLC. All rights reserved.

Unrestricted © Siemens AG 2017

Deloitte and MIT: "Following the Digital Thread"

Copyright © 2017 Deloitte Development LLC. All rights reserved.

Unrestricted © Siemens AG 2017

References

- <u>https://www.forbes.com/sites/louiscolumbus/2018/04/22/th</u> <u>e-state-of-digital-business-transformation-</u> <u>2018/#59e9bdcb5883</u>
- <u>http://reports.weforum.org/digital-transformation/wp-</u> <u>content/blogs.dir/94/mp/files/pages/files/digital-enterprise-</u> <u>narrative-final-january-2016.pdf</u>
- <u>https://www.slideshare.net/dhinchcliffe/next-generation-</u> <u>digital-enterprise-workplace-technology-enterprise-digital-</u> <u>arena-2017-keynote-by-dion-hinchcliffe</u>
- https://www2.deloitte.com/content/dam/Deloitte/be/Docum ents/technology/deloittedigital/Deloitte-Digital-BE_Buildingyour-digital-DNA_download_HR.pdf